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1 Accomplishments

1.1 Project Goals

This project addressed the following tasks, aimed at developing technologies to identify the source
of digital images using multimedia forensics:

e Task 1. Implementing forensic algorithms that identify traces specific to the make and model
of the device that captured an image.

e Task 2. Developing data fusion algorithms that will optimally combine these forensic traces
and use them to identify the make and model of an image’s source device.

e Task 3. Creating a high-performance and scalable implementation of our algorithms through
the design of highly parallel algorithms suitable for use on multi-core CPUs and graphics
processing units (GPUs).

e Task 4. Developing techniques to enable large-scale crowdsourced training of our algo-
rithms and its associated software implementation.

Milestones and Deliverables

This project will provided major deliverables in six-month increments over a period of 18 months.
These deliverables and their associated schedule of delivery are listed below. In addition to these
deliverables, monthly execution reports to OUSD (AT&L) were delivered, as well as a final report
(i.e. this report) upon 100% fund expenditure.

Deliverables Provided Six Months After Contract Award (August 1, 2015):

e Baseline techniques to identify forensic traces specific to a camera’s make and model.

e Algorithm to determine the make and model of an image’s source device using basic fusion
these forensic traces.

e Single-core software implementations of these algorithms using C/C++ and/or MATLAB,
along with testing and validation performed on approximately 20-25 cameras models.

Deliverable Provided Twelve Months After Contract Award (February 1, 2016):

e Improved techniques to identify forensic traces specific to a camera’s make and model.

Updated algorithm to determine the make and model of an image’s source device using
improved fusion these forensic traces.

Software implementations of these algorithms using MATLAB, along with testing and vali-
dation performed on approximately 50 cameras models.

Parallel design and implementation of algorithms developed as six month deliverables in
C/OpenMP that are suitable for use on multi-core CPUs.
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Baseline forensic algorithm to identify the imaging device type (i.e., camera, scanner, etc).

Design of algorithm to gather, process, and ensure the integrity of crowd-sourced training
data.

Deliverables Provided Eighteen Months After Contract Award (August 1, 2016):

Enhanced techniques to identify forensic traces specific to a camera’s make and model.

Improved algorithm to determine the make and model of an image’s source device using
more sophisticated fusion of forensic traces.

Incorporation of algorithms to forensically identify basic editing that may affect camera
model identification (multiple JPEG compression, resizing, etc.)

Software implementations of these algorithms using MATLAB, along with testing and vali-
dation performed on approximately 75 cameras models.

OpenMP implementations for multi-core CPUs of algorithms developed as 12 month deliv-
erables and the development of highly-parallel algorithms for forensics and data fusion.

C/CUDA-based implementation of the above developed techniques for GPUs.

Implementation of a crowd-sourced training algorithm, along with initial testing and valida-
tion using an image set gathered from Internet photo-sharing sources.



Time Line Chart by Task

The following table provides a breakdown of the project timeline, organized in terms of the various
proposed tasks.

Task Description Phase 1 | Phase 2 | Phase 3
Baseline multimedia forensic techniques to v
identify camera traces.
#l Improved multimedia forensic techniques to v v
identify camera traces.
Algorithm development to forensically identify v
editing that can be used as anti-forensic coun-
termeasures.
Testing and validation. v v v
Baseline data fusion algorithm to perform de- v
vice model identification.
#2 Improved data fusion algorithm to perform de- v v
vice model identification.
Incorporation of traces of anti-forensic editing v
into fusion algorithms.
Testing and validation. v v v
#3 Single core implementations of forensic pro- v v v
cessing workflows.
GPU and Multi-Core accelerated Forensic Pro- v v
cessing Workflows.
Software testing and verification. v v v
#4 Crowd-sourced techniques for image data ac- v v
quisition for the forensic algorithms and soft-
ware training.

Table 1: Project schedule and milestones.



1.2 What was accomplished under these goals?

Summary
Below is a summary of the major accomplishments achieved under this project.

e We developed two new algorithms to perform camera model identification using demosaic-
ing traces. Both algorithms are described below.

e One algorithm was designed to be very computationally efficient. This algorithm is described
in Section 1.2.2.

o This algorithm operates by obtaining a least-squares estimate of a camera’s demosaic-
ing filter, then uses these filter estimates a camera model identification traces.

o Experimental results show that this algorithm can can identify the make and model of
an image’s source camera with an average accuracy of 86.81%.

e One algorithm was designed to be highly accurate and yield reliable results in re-compressed
or potentially post-processed images. This algorithm is described in Section 1.2.3.

o This algorithm operates by using an advanced machine learning algorithm to search for
statistical traces in features we call ‘demosaicing residuals’.

o Experimental results show that this algorithm can can identify the make and model of
an image’s source camera with an average accuracy of 99.65%.

e We implemented an algorithm to perform camera model identification using information
stored in an image’s header file such as JPEG quantization tables, Huffman tables, image
height and width. This algorithm is described in Section 1.2.4.

o This algorithm is capable of identifying a small set of possible source camera models
without making classification errors.

o This algorithm is designed to be integrated into our hierarchical decision fusion frame-
work.

e We designed a new hierarchical decision fusion framework to combine multiple traces in
order to perform highly accurate and computationally efficient camera model identification.

o This framework integrates each of the algorithms described above.

o Experimental results show that when the computationally efficient demosaicing trace
based algorithm is integrated into our framework, it can perform camera model identi-
fication with an average accuracy of 99.96 % . This corresponds to a 13.15 percentage
point increase in accuracy.

e We developed a highly parallel GPU implementation of our demosaicing residual based
algorithm that resulted in an over one order of magintude decrease in runtime.

e We collected a large scale image database for testing and validation purposes. Our database
contains approximately 35,160 images collected using 71 different camera models. Addi-
tionally, we created a software application to crawl the photo sharing website Fickr and
gather public domain images for the creation of a very large scale database.
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o We created a software package titled the Source Camera Model Identification Tool con-
taining implementations of all algorithms developed under this project. A description of this
software module is give in Section 2.3 of the “Products” section of this report.

o This software package can be run on individual images or large data sets from either a
graphical user interface or a Matlab command line.

o We created a 32 page user manual describing how to install our software, use it to
identify the source camera model of images under investigation, and how to train it to
recognize new camera models.

1.2.1 Background Information

The set of physical components and processing algorithms that a device uses to capture a digital
image is known as its image processing pipeline. The image processing pipeline of a typical digital
camera is shown in Fig. 1.

|
|
Demosaicing » Post > JPEG |
(Color Processing) Processing Compression |

Camera’s Internal Processing

Fig. 1: The image processing pipeline of a digital camera

Light enters a camera by first passing through a lens. Since most imaging sensors are only
capable of measuring one color of light at each pixel location, the light next passes through a
color filter array (CFA), which is an optical filter that allows only one color of light (red, green, or
blue) to hit the imaging sensor at a particular pixel location. The sensor then measures the light
intensity of the corresponding color band at each pixel location, and produces an image constructed
of three partially sampled color layers. Next, the unobserved color values at each pixel location
are interpolated using a process known as demosaicing. Demosaicing algorithms are typically
proprietary and are updated by a camera manufacturer with each new model. After this, the image
may undergo post-processing, such as white balancing and color correction, followed by JPEG
compression before the final image file is output or stored.

While the image processing pipelines of different devices are generally composed of com-
mon elements (e.g. lens, sensor, color processing algorithms, image compression, etc.), the spe-
cific implementation and characteristics of each element typically varies from manufacturer-to-
manufacturer and from model-to-model. Additionally, different types of imaging devices, such as
digital cameras and scanners, may use image processing pipelines composed of slightly different
sets of elements. The image processing pipeline is typically consistent, however, across all devices
that share a common model and manufacturer.

1.2.2 Computationally Efficient Camera Model Identification Algorithm Using Demosaic-
ing Filter Estimates

This algorithm identifies the make and model of an image’s source camera using traces left in
the image by the camera’s internal demosaicing algorithm. It is designed to be computationally



efficient, and to allow investigators to balance the trade-off between camera model identification
accuracy and computational complexity (i.e. processing time). The development and implementa-
tion of this algorithm addressed Tasks 1, 2, and 3 of this project.

Algorithm Overview

This algorithm builds upon previous work by Swaminathan et al.! in which the demosaicing
process inside a camera is modeled as a set of linear shift-invariant filter. To compensate for the
fact that the vast majority of demosaicing algorithms used by modern digital cameras are nonlinear
and adaptive, this algorithm divides each color channel (red, green, and blue) of an image into
separate gradient/texture regions (horizontal gradients, vertical gradients, and smooth) where the
demosaicing process can locally be approximated as linear. It then obtains a different estimate of
the demosaicing filter for each pairing of color channel and gradient region. These filter estimates
are then grouped together to form a single camera model identification feature set. A support
vector machine (SVM) is then trained to perform camera model identification on the basis of this
feature set.

The original algorithm proposed by Swaminathan et al. has a significant shortcoming; it is
too computationally expensive to use all pixels in an image to perform demosaicing filter estima-
tion. To mitigate this, Swaminathan et al. proposed a heuristic for selecting a small window of
an image to use for performing filter estimation and camera model identification. Our initial ex-
periments revealed, however, that their heuristic can yeild inconsistent and highly variable results.
Furthermore, it cannot precisely control the trade-off between computational complexity and accu-
racy, i.e. sometimes small image windows will still require significant processing and sometimes
large image windows will not yeild sufficiently accurate filter estimates to perform camera model
identification.

In this project, we developed a new algorithm that is able to search through an entire image and
find the set of the N best pixels throughout the entire image to use for performing demosaicing
filter estimation. To accomplish this, we first derived a lower bound on the Frobenius norm of
demosaicing filter’s estimation error covariance matrix. Insights gained from this lower bound
allowed us to identify that better filter estimates can be produced by using the N pixels whose
local neighborhoods had the highest variance to perform estimation. Furthermore, we developed
a quick way to identify an approximation of this set of pixels and to ensure that they have proper
gradient orientation. We do this by using the set of pixels along edges in an image with the N
largest edge strengths.

Using this information, we devised a method to allow an investigator to balance the trade-off
between computational complexity and camera model identification accuracy when performing
demosaicing trace estimation as described above. Furthermore, at a fixed computational cost, our
algorithm results in a significantly higher camera model identification accuracy than Swaminathan
et al.’s approach. Similarly, our algorithm significantly reduces the computational cost needed to
achieve a particular minimum camera model identification accuracy.

Additionally, we investigated two techniques to report confidence scores along with our camera
model identification results. Instead of using a traditional SVM to perform classification, we used
a P-SVM (i.e. an SVM with Platt scaling) as well as a neural network to return camera model

'A. Swaminathan, M. Wu, and K. J. R. Liu. “Nonintrusive component forensics of visual sensors using output
images.” IEEE Transactions on Information Forensics and Security, vol. 2, no. 1, Mar. 2007, pp. 91-106.



identification confidence scores and decisions. An experimental evaluation suggests that the P-
SVM approach yields more reliable results.

Testing and Validation Results

We performed two sets of experiments to test and validate the performance of this algorithm.
In the first experiment, we evaluated our algorithm’s ability to perform large-scale camera model
identification on a set of images from 71 different camera models. To conduct this experiment,
we used approximately 300 images from each camera model in our database for a total of 20,945
images. See Section 1.2.7 for details of this database. Our classifier was trained and tested using
five-fold cross-validation. Specifically, the data was divided into five approximately equal folds.
Four data folds were used to train the classifier, then the trained classifier was used to determine
the source images in the remaining fold. This process was repeated five times, each time using a
different set of training and testing folds, and the overall classification accuracy was averaged over
all five experiments.

Results of this experiment show that our computationally efficient algorithm was able to cor-
rectly identify the model of an image’s source with 86.81% accuracy. These results show that
our algorithm can be used to accurately identify the model of an image’s source camera on large
sets of data. Later in this report, we will show that when this algorithm is incorporated into our
camera model trace data fusion framework, we can achieve a camera model identification accuracy
0f 99.96%.

In our second set of experiments, we characterized the our algorithm’s trade-off between com-
putational complexity (i.e. runtime) and identification accuracy, and showed that it yields a sig-
nificant performance gain over the approach proposed by Swaminathan et al. To conduct this
experiment, we used a set of images 1300 images captured using 13 different camera models from
our experimental database. These models consisted of 9 cell phone cameras, 2 point-and-shoot
cameras, and 2 digital SLRs. We then fixed a computational cost (as measured by the size of
the data matrix used when performing least-squares demosaicing filter estimation) and measured
the camera model identification accuracy of both our approach and Swaminathan et al.’s approach
using five-fold cross validation.

Results of this experiment are shown in Fig. 2. From this experiment, we can see that our
algorithm results in a significantly greater classification accuracy at a fixed computational cost.
For example, for a data matrix length of n = 2515 per gradient region, our method achieves a
classification accuracy of 71.3% accuracy. By contrast, Swaminathan et al.s method achieves a
classification accuracy 47.3%. This 24.0% gain in classification accuracy is marked using the green
double arrow. Similarly, Fig. 2 also shows that a given classification accuracy can be achieved by
our algorithm at a much lower computational cost. The decrease in computational cost achieved
using our proposed method is marked using the red double arrow.

1.2.3 Advanced Camera Model Identification Algorithm Using Demosaicing Residuals

We developed an advanced, machine learning based algorithm that identifies the make and model
of an image’s source camera using traces left in the image by the camera’s internal demosaicing
algorithm. This algorithm is designed to be highly accurate and robust to post-processing. The
development and implementation of this algorithm addressed Tasks 1, 2, and 3 of this project.
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Fig. 2: Tradeoff between computational complexity vs. classification accuracy for our method (labeled
as ‘proposed method’) and Swaminathan et al.’s method (labeled as ‘window-based method’). The length
of the data matrix used when performing least-squares estimation is used as a measure of computational
complexity.

Algorithm Overview

This algorithm is a powerful, machine learning-based algorithm designed to gather traces left in
an image by its source camera’s demosaicing algorithm without using explicit parametric models.
Instead, it searches for content-independent pixel value and color channel relationships introduced
by the demosaicing process. To accomplish this, the color values of an image are first resampled
according to a fixed color filter array (CFA) pattern. Next, the image is re-demosaiced using a vari-
ety of both linear and nonlinear demosaicing algorithms. After this, a set of demosaicing residuals
are calculated by subtracting each re-demosaiced image from the original image. This suppresses
an image’s scene contents and allows us to search for traces left by the camera’s demosaicing
algorithm. After this, a set of third-order co-occurrence matrix features are computed from the de-
mosaicing residuals using the co-occurrence patterns shown in Figs. 3 and 4. These co-occurrence
matrices are multi-dimensional histogram approximations of the joint distribution of demosaicing
residuals that are used to expose unique intra-channel and inter-channel correlations introduced by
a camera model’s demosaicing algorithm. Finally, the co-occurrence matrices are pooled together
and used as a high-dimensional camera model identification feature set.

A 7 Lo, [ as| [N -8 2 ° 8 c * R
3 3

Fig. 3: Intra-channel co-occurrence patterns for red (left), green (middle) and blue (right) channels.

Camera model identification is performed using a powerful, specially designed ensemble clas-
sifier. This classifier is built from a set of binary classifiers trained to distinguish between each pair
of potential camera models. A multi-class classifier is created from these intermediate binary clas-
sifiers using the all-against-all strategy, and decisions of these intermediate binary classifiers are
fused using a majority voting protocol. Each binary classifier is itself an ensemble classifier made
of a large set of Fischer linear discriminant classifiers that pull a random subset of features from
the full co-occurrence feature set. An overview of our entire feature extraction and classification
framework’s architecture used under this algorithm is shown in Fig. 5.
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Fig. 5: Architecture of our demosaicing residual based camera model identification framework.

Testing and Validation Results

We performed several sets of experiments to test and validate the performance of this algorithm.
In our first experiment, we evaluated our algorithm’s ability to perform large-scale camera model
identification on a set of images from 65 different camera models. To conduct this experiment, we
used 33,568 images from our database described in Section 1.2.7. Each image was then divided
into 512 x 512 pixel blocks, and blocks with insufficient lighting or texture were excluded, result-
ing in a set of 606,424 distinct image blocks. We then trained our classifier using approximately
90% of these blocks and used our algorithm to identify the make and model of the source camera
of the remaining 10% of blocks.

Using this advanced algorithm, we achieved an average camera model classification accu-
racy of 99.65%. These results are the highest reported camera model classification accuracy of
any existing algorithm. Furthermore, we note that to the best of our knowledge, these results have
been achieved on a database containing more camera models than any other algorithm. Recent
publications have referred to an intermediate version of our algorithm published in 2015 as the
state-of-the-art algorithm for performing camera model identification?.

Additionally, we performed a series of experiments to determine the robustness of this al-
gorithm to image post-processing operations. To conduct these experiments, we used images
from the 12 different camera models shown in Table 2. We then post-processed these images
by re-compressing them using JPEG quality factors of 90 and 70, as well as performing contrast
enhancement using gamma correction with v = 0.8. These operations were selected because re-
compression and color correction are processing operations commonly applied to images by online
photo sharing sites and social media applications. After this, we trained our classifier using 90%

2L.. Bondi, L. Baroffio, D. Guera, P. Bestagini, E. Delp, and S. Tubaro, “First Steps Towards Camera Model
Identification with Convolutional Neural Networks.” IEEE Signal Processing Letters, Dec. 2016.



of each data set and used it to determine the source of the remaining 10% of post-processed image.

Camera Number | Make Model
1 Canon PC1234
2 Apple iPhone 4s
3 Apple iPhone 5
4 Apple iPhone 5s
5 Apple iPhone 6
6 Motorola | Moto X
7 Nikon D7100
8 Nokia | Lumia 920
9 Samsung | Galaxy S4
10 Samsung | Galaxy S5
11 Sony A6000
12 Sony NEX-5TL

Table 2: Camera models used in our robustness evaluation experiments.

Our advanced algorithm was able to correctly identify the source of gamma corrected images
with an average accuracy of 99.65%. Similarly, it was able to correctly identify the source of JPEG
images with an average accuracy of 99.64% for images recompressed using a quality factor of 90
and with an average accuracy of 98.89% for images recompressed using a quality factor of 70.
Tables 3, 4, and 5 contain confusion matrics showing detailed results of these experiments with
individual correct identification accuracies listed in bold. The results of these experiments indicate
that our advanced algorithm is highly robust to several post-processing operations.

True Model
1 2 3 4 5 6 7 8 9 10 11 12
100.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 |99.900 | 0.100 | 0.000 | 0.112 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 99.800 | 0.500 | 0.112 | 0.100 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 99.400 | 2.354 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 0.000 |97.422 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.100 | 0.000 | 0.000 | 0.000 |99.800 | 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 100.000 | 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 | 100.000 | 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.100 0.000 0.000 | 100.000 | 0.000 0.000 0.000
10 | 0.000 0.000 | 0.100 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 | 100.000 | 0.000 0.000
11 0.000 0.000 | 0.000 | 0.100 | 0.000 | 0.000 0.000 0.000 0.000 0.000 | 99.390 | 0.000
12 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000 0.610 | 100.000

Identified Model

O 0| | O\ | B W9 —

Table 3: Confusion matrix for camera model identification performed on JPEG compressed images using a
JPEG quality factor = 90.

Resiliance to Anti-Forensic Camera Model Falsification Attacks

An intelligent information attacker can modify an image by using anti-forensic algorithms in
an attempt to disguise its true source. We developed a protocol to train our algorithm to both detect
anti-forensic attacks and identify the model of the camera that actually captured an attacked image.
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True Model
1 2 3 4 5 6 7 8 9 10 11 12
100.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 | 0.000 | 0.000
0.000 |99.700 | 0.100 | 0.200 | 0.000 | 0.000 | 0.100 | 0.000 0.000 0.000 | 0.000 | 0.000
0.000 0.100 | 98.600 | 0.700 | 0.448 | 0.000 | 0.000 | 0.000 0.000 0.000 | 0.000 | 0.000
0.000 0.100 | 0.900 |96.200 | 3.812 | 0.100 | 0.000 | 0.000 0.000 0.000 | 0.305 | 0.184
0.000 0.000 | 0.100 | 2.400 | 95.404 | 0.000 | 0.000 | 0.255 0.000 0.100 | 0.000 | 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 | 99.200 | 0.000 | 0.000 0.000 0.100 | 0.000 | 0.000
0.000 0.000 | 0.300 | 0.100 | 0.000 | 0.000 | 99.800 | 0.000 0.000 0.000 | 0.000 | 0.000
0.000 0.100 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |99.745 | 0.000 0.000 | 0.000 | 0.000
0.000 0.000 | 0.000 | 0.300 | 0.000 | 0.100 | 0.000 | 0.000 | 100.000 | 0.000 | 0.000 | 0.000
0.000 0.000 | 0.000 | 0.100 | 0.224 | 0.500 | 0.100 | 0.000 0.000 | 99.800 | 0.000 | 0.000
0.000 0.000 | 0.000 | 0.000 | 0.112 | 0.100 | 0.000 | 0.000 0.000 0.000 | 98.780 | 0.368
0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 | 0.915 | 99.449

Identified Model

o] =| S| O] 00| | O\ L AW 1| =

Table 4: Confusion matrix for camera model identification performed on JPEG compressed images using a
JPEG quality factor = 70.

True Model
1 2 3 4 5 6 7 8 9 10 11 12
100.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 | 99.900 | 0.100 | 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.100 | 99.700 | 0.300 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 0.200 | 99.400 | 3.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 0.300 | 96.973 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 | 100.000 | 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 0.000 | 100.000 | 0.000 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 | 100.000 | 0.000 0.000 0.000 0.000
0.000 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 | 100.000 | 0.000 0.000 0.000
10 | 0.000 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000 | 100.000 | 0.000 0.000
11 | 0.000 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 | 99.848 | 0.000
12 | 0.000 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.152 | 100.000

\O| 00| | V| | | W| | —

Identified Model

Table 5: Confusion matrix for camera model identification performed on gamma corrected images with
v =0.8.

Anti-Forensic Attack Description: We define the true camera model 4 as the model of the camera
that actually captured an image. Additionally, we define the target camera model 5 as the model
of the camera that an attacker wants investigators to believe was used to capture an image. A
camera’s demosaicing algorithm is modeled as linear interpolation implemented by convolving a
partially color sampled image S output by the sensor with the camera’s demosaicing filter  to
produce the final image [ = S * . The attack proceeds along the following steps:

1. Obtain a least-squares estimate the target camera’s demosaicing filter f5 using either our
algorithm described in Section 1.2.2, the algorithm proposed by Swaminathan et al.?, or a
similar algorithm.

2. Pass the image under attack [ through a “synthetic” color filter array (CFA) by resampling /

such that only color values directly observed by the sensor are retained. This will reproduce
S.

3A. Swaminathan, M. Wu, and K. J. R. Liu. “Nonintrusive component forensics of visual sensors using output
images.” IEEE Transactions on Information Forensics and Security, vol. 2, no. 1, Mar. 2007, pp. 91-106.
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3. Produce the anti-forensically attacked image I by using the estimated demosaicing filter
from the target camera to re-demosaic S such that I = .S x 0.

After this anti-forensic attack, the attacked image I will have demosaicing traces associated
with camera g even though it was captured using camera y4.

Anti-Forensic Attack Validation: We performed experimental validation and performance evalua-
tion of the anti-forensic attack described above. Experiments were performed by capturing 300
unaltered images from each of the cameras listed below in Table 6.

Table 6: True camera models in our database

Model No. | True Camera Models
1 Canon PC1234
2 Canon Powershot G10
3 Samsung Galaxy S3
4 Sansung Galaxy S4
5 iPhone 4s
6 iPhone 6

The anti-forensic attack was then used to make each image appear as if it was captured using
a different target camera model, resulting in a set of 10,800 images from 36 possible (true, target)
camera model pairings. Swaminathan et al.’s camera model identification algorithm was then used
to determine the source of each anti-forensically modified image.

The overall success rate of the attack (i.e. the target model was identified instead of the true
model) was 97.34%. Detailed experimental results are shown below in Table 7.

Target Model

1 2 3 4 5 6

* 95.33 | 98.33 | 99.00 | 93.67 | 98.67
99.00 * 98.33 | 99.00 | 93.33 | 98.67
99.00 | 95.67 * 99.00 | 93.67 | 98.67
99.00 | 95.33 | 98.00 * 93.67 | 98.67
99.00 | 95.67 | 98.33 | 99.00 * 98.67
99.00 | 95.67 | 98.33 | 99.00 | 93.33 *

True Model

QN | K| W] N —

Table 7: Successful attack rate for 30 true and target camera model parings (x denotes no attack is necessary
since the true and target model are the same).

Anti-Forensic Attack Detection and True Camera Model Identification: Because this attack relies
on a linear model of a camera’s demosaicing filter, it is not able capture or falsify demosaicing
traces left by nonlinear components of a camera’s demosaicing algorithm. By contrast, our ad-
vanced algorithm that utilizes demosaicing residuals to perform camera model identification can
observe these nonlinear traces.

To defend against the anti-forensic attack described above, we trained our demosaicing residual-
based camera model identification algorithm using both authentic images and images whose source
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camera has been falsified. Each pairing of true and target camera model was labeled as a different
class so that our classifier could identify the true source of an image (i.e. detect that the true and
target camera model are different, and determine the true model).

We evaluated the performance of this approach on the experimental database consisting of
images captured by cameras listed in Table 6. Experimental results show that our approach was
able to detect anti-forensically attacked images and determine their true origin with 99.81%
accuracy. Table 8 shows detailed results our approach’s accuracy at detecting the true camera
model of falsified images.

Target Model
1 2 3 4 5 6
100.00 | 99.80 | 100.00 | 100.00 | 100.00 | 99.40
100.00 | 100.00 | 99.81 | 99.54 | 100.00 | 98.93
100.00 | 98.93 | 100.00 | 100.00 | 100.00 | 100.00
100.00 | 100.00 | 98.71 | 100.00 | 99.58 | 100.00
100.00 | 100.00 | 100.00 | 100.00 | 99.57 | 100.00
100.00 | 99.82 | 99.19 | 100.00 | 100.00 | 100.00

True Model

AN | | W[ —

Table 8: True source identification accuracies for anti-forensically falsified camera models.

1.2.4 JPEG Header Trace Extraction

We implemented an algorithm to extract forensically significant traces from an image’s JPEG
header. These traces are then used to eliminate camera models that do not produce images with
an identical set of JPEG header traces and identify a small set of possible source camera models.
This algorithm was designed to be implemented into our data fusion framework described in Sec-
tion 1.2.5. The development and implementation of this algorithm addressed Tasks 1, 2, and 3 of
this project.

Algorithm Overview

An image’s JPEG header contains several forensically significant traces. In this project, we
utilized discrete cosine transform (DCT) quantization tables, Huffman code tables, and the image’s
height and width (in pixels) as forensic traces. Since an JPEG compression has a significant impact
on the quality of an image, most digital camera manufacturers design their own proprietary DCT
quantization tables. Similarly, most camera manufacturers develop their own Huffman coding
tables to use during the lossless portion of JPEG compression. Additionally most camera models
are only capable of producing images in a small number of sizes.

While the values these traces are not typically unique to a particular camera model, very few
camera models will produce an identical set of traces. We use these traces to sort camera models
into groups called equivalence classes. All camera models in an equivalence class are capable of
producing an identical set of JPEG header traces.

We developed a software module to read these traces from an image’s JPEG header and com-
pare them to a hash table of precomputed equivalence classes. It can be trained, i.e. used to gen-
erate a hash table of equivalence classes, by extracting traces from a set of images whose source
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is already known and matching camera models with identical traces. This module was written in
C++ with a MEX interface into Matlab and is designed to be integrated into our camera model
trace fusion framework described

1.2.5 Data Fusion Framework for Combining Camera Model Identification Traces

We developed a hierarchical data fusion framework to combine information gathered from an
image’s JPEG header with demosaicing filter traces. This framework significantly increases the
overall camera model identification accuracy of our algorithms described above, particularly our
algorithm described in Section 1.2.2. The development and implementation of this framework
addressed Tasks 2, and 3 of this project.

Framework Overview

Our data fusion framework is designed to exploit intrinsic information hierarchies that naturally
occur within camera model identification fingerprints. For example, JPEG header traces can be
used to eliminate possible source camera models without running the risk of making decision
errors, but they cannot be used to identify a single source camera model.

Our framework uses a tree-based decision structure that exploits these latent information hi-
erarchies. Early stages of the framework eliminate camera models that cannot possibly be the
image’s source camera. Later stages identify a single source camera model from the reduced set of
possible camera models. This divide-and-conquer approach reduces the number of camera mod-
els that later stages need to choose from, thus increasing the accuracy of classifiers used at these
stages. Since these early stage decisions are error-free, this reduces the overall error rate of the
entire framework.

An overview of of our decision fusion algorithm is described below:

1. JPEG header information such as quantization tables, image size, etc. is extracted from an
image.

2. These traces are used to sort image into one of N equivalence classes. Each equivalence
class is the set of all camera models able to produce images with the same JPEG header
information.

3. Demosaicing filter traces are extracted from the image using one of the two algorithms de-
scribed in Sections 1.2.2 and 1.2.3.

4. A trained classifier is used to differentiate between each camera model in the equivalence
class on the basis of the demosaicing filter traces.

Testing and Validation Results

We performed an experiment to test and validate the performance of our data fusion framework.
To do this, we used our algorithm’s ability to perform large-scale camera model identification on a
set of images from 71 different camera models. To conduct this experiment, we used approximately
300 images from each camera model in our database described in Section 1.2.7 for a total of 20,945
images. Demosaicing trace extraction and final camera model identification decisions were made
using our computationally efficient algorithm described in in Section 1.2.2. Finally, our framework
and the classifiers integrated into it were trained and tested using five-fold cross-validation.
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Results of this experiment show that our hierarchical data fusion framework was able to
correctly identify the model of an image’s source with 99.96% accuracy. Without using this
framework, our algorithm described in in Section 1.2.2 was only able to achieve a classification
accuracy of 86.81%. These results show that our data fusion framework was able to provide a
13.15 percentage point increase in accuracy.

1.2.6 Design and GPU Implementation of Parallel Algorithms

The camera model identification that utilizes demosaicing residual described in Section 1.2.3 is
very computationally expensive. To mitigate this issue, we developed a parallel version of this
algorithm that is suitable for implementation on graphics processing units (GPUs). Our C/CUDA
implementation of this algorithm reduces the runtime of performing camera model identification
by over an order of magnitude. The development and implementation of this algorithm addressed
Tasks 1 and 3 of this project.

Algorithm Overview

The most computationally expensive element of our algorithm described in Section 1.2.3 is the
calculation of co-occurrence matrices from demosaicing residuals. To reduce this computational
cost, our algorithm exploits data level parallelism when building co-occurrence histograms, i.e. the
residual data is distributed across many GPU cores, intermediate calculations are performed, then
the resulting data is combined to form the co-occurrence histograms. To further improve efficiency,
we developed a method to process multiple images per call, which avoids having to pay the costs
of re-initializing the GPU in between every image. This was improved by developing a technique
to prevent GPU idling by splitting process into two streams. This allows the CPU to fetch the next
image from the hard drive while the GPU kernel is executing.

Additionally, we created a technique to reduce the data transfer bottleneck and improve GPU
workload efficiency by processing multiple co-occurrence patterns simultaneously per image. This
resulted in a significant speedup over processing one co-occurrence pattern at a time.

Testing and Validation Results

To measure the computational efficiency gains achieved by our parallel algorithm we performed
a series of experiments. Our algorithm was run on an Nvidia GTX 980 GPU with 4 GB of onboard
RAM, along with a CPU version run on a computer with a 3.4 GHz Intel i7-4770 processor and 16
GB of RAM. Testing and validation of GPU implementation of parallel algorithm performed on
1,000 image patches of size ranging from 128 x 128 pixels to 1024 x 1024 pixels.

In our first experiment, we performed a runtime comparison between our parallel algorithm ca-
pable of running on a GPU and our original sequential algorithm running on a CPU. Experimental
results are shown below in Figure 7. Our improved parallel algorithm achieved an order of
magnitude speed-up when compared to our original sequential algorithm.

Additionally, we performed a runtime comparison between our individual algorithm calls for
calculating co-occurrence matrices for six different co-occurrence patterns and our improved tech-
nique using a single algorithm call capable of processing all six co-occurrence patterns at once.
Experimental results are shown below in Figure 8. Our improved technique to process multiple
co-occurrence patterns in parallel achieved an addtional speed-up of greater than 2 x.
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Fig. 7: Runtime comparison for calculating co-occurrence matrices for 1,000 images using our improved
parallel algorithm implemented on a GPU and our original sequential algorithm implemented on a CPU.
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Fig. 8: Runtime comparison for calculating co-occurrence matrices using six different co-occurrence patters

for 1,000 images using individual calls of our algorithm and our improved technique capable of processing
multiple co-occurrence patterns at once.
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1.2.7 Large Scale Data Collection

A large scale image database was collected in order to perform testing and validation of the camera
model identification algorithms and software tools developed under this award. The collection of
this database addressed Task 4 of this project.

Our database contains approximately 35,160 images collected using 71 different camera
models, including cell phone cameras, digital SLRs, and point-and-shoot cameras. All images
were manually collected to ensure that their provenance could accurately be recorded and to ensure
that they underwent no post-processing or enhancement. At least 300 images were collected using
each camera model in the database. For several camera models, multiple devices (of the same
make and model) were used to collect images. Images were captured using a variety of scenes
(both indoor and outdoor) and lighting conditions. All images were captured and stored as JPEGs
using the camera’s default settings.

Additionally, a software tool written in JAVA was created to crawl the photo sharing website
Flickr*, and download public domain images in order to create a large-scale database for testing
and validation purposes. This was done to enable future efforts to perform very large scale training
and validation of our camera model identification framework.

1.3 Opportunities for training and professional development

This project afforded several opportunities for training and professional development. A total of
five graduate students (four doctoral and one masters student) were involved in developing the
algorithms and software created under this project. As a result, this project enabled these students
to receive advanced training in multimedia forensics, signal processing, and machine learning
research from PI Stamm with additional training from Co-PI Kandasamy.

Additionally, this project facilitated the professional development of both PI Stamm and the
graduate students involved in this project by enabling attendance at major research conferences.
Both PI Stamm and graduate students involved with this project were able to attend and present
research conducted under this project at the 2015 IEEE International Workshop on Information
Forensics and Security (WIFS) and the 2016 IEEE International Conference on Image Processing
Icrp).

1.4 Dissemination of results to communities of interest

This project led to the publication of two papers listed in Section 2.1. Talks associated with these
papers were given at the 2015 IEEE International Workshop on Information Forensics and Security
(WIFS) and the 2016 IEEE International Conference on Image Processing (ICIP). Furthermore,
two journal papers describing research developed under this project are being prepared for submis-
sion to IEEE Transactions on Information Forensics and Security. These papers are also listed in
Section 2.1.

In addition to these publication efforts, descriptions of the algorithms developed under this
project, software demonstrations, and training sessions were provided to stakeholders during bi-
annual performance review and project closeout meetings held in August 2015, February 2016,

*https://www.£flickr.com/
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and August 2016. Representatives from the Defense Forensics Science Center, the National Me-
dia Exploitation Center, the Digital Cyber Crime Center, the Federal Bureau of Investigation, the
Department of Homeland Security, the Defense Advanced Research Projects Agency, and several
other federal agencies attended these meetings
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2 Products

2.1 Publications, conference papers, and presentations

The following peer-reviewed publications were produced as a result of work performed under this
award:

C. Chen and M. C. Stamm, “Camera model identification framework using an ensemble of demo-
saicing features” Proceedings of the IEEE International Workshop on Information Forensics and
Security (WIFS), Rome, Italy, Nov. 2015, pp. 1-6.

Status: Published

Acknowledgment of Federal Support: Yes

X. Zhao and M. C. Stamm, “Computationally efficient demosaicing filter estimation for camera
model identification” Proceedings of the IEEE International Conference on Image Processing
(ICIP), Phoenix, AZ, Sep. 2016, pp. 151-155.

Status: Published

Acknowledgment of Federal Support: Yes

Additionally, the following publications are being prepared for submissions to peer-reviewed sci-
entific journals as a result of work performed under this award:

C. Chen and M. C. Stamm, “Robust camera model identification using demosaicing residuals” in

preparation for submission to IEEE Transactions on Information Forensics and Security, to be
submitted Feb. 2017.

Status: In preparation for submission to IEEE Transactions on Information Forensics
and Security
Acknowledgment of Federal Support: Yes (Will occur when paper is submitted)

X. Zhao and M. C. Stamm, “Efficient and scalable camera model identification using hierarchi-
cal feature fusion algorithms for big data environments.” in preparation for submission to IEEE
Transactions on Information Forensics and Security, to be submitted Mar. 2017.

Status: In preparation for submission to IEEE Transactions on Information Forensics
and Security
Acknowledgment of Federal Support: Yes (Will occur when paper is submitted)

2.2 Databases

An image database was collected in order to perform testing and validation of the camera model
identification algorithms and software tools developed under this award. This database contains
approximately 35,160 images collected using 71 different camera models, including cell phone
cameras, digital SLRs, and point-and-shoot cameras. At least 300 images were collected using
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each camera model in the database. For several camera models, multiple devices (of the same
make and model) were used to collect images. Images were captured using a variety of scenes
(both indoor and outdoor) and lighting conditions. All images were captured and stored as JPEGs
using the camera’s default settings.

Copies of this database were delivered to representatives from the Defense Forensics Science
Center and the Science (DFSC) and Technology Integration Laboratory (STIL) at the closeout
meeting for this project that occurred on August 25, 2016. We note that this image database
is signficantly larger than the Dresden Image Database®, which is currently the largest publicly
available database used to test and validate multimedia forensic algorithms.

2.3 Technologies or techniques

This award led to the development of a software package titled the Source Camera Model Identifi-
cation Tool. Screenshots of this tool are shown below in Fig. 9.

4 Camera Model Identification o | E | 4 Camera Model Identification [E=E 4] Camera Model dentification o | E ||
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Fig. 9: Screen capture of our Matlab camera model identification software framework’s graphical user
interface while performing classification and while performing training.

The Source Camera Model Identification Tool software package includes implementations of
all algorithms developed under this project, including separate modules for performing camera
model identification (with the option to perform identification using all algorithms developed under
this project both with and without feature fusion), large-scale feature extraction, and classifier
training. It can be run using either a Graphical User Interface or from the command line in Matlab.
Source code was written was written in Matlab, C/C++, and CUDA, and is provided along with
the full software package. Furthermore, the software package includes all trained machine learning
algorithms and classifiers it calls upon.

A 32 page user manual was created for the Source Camera Model Identification Tool to provide
documentation and user instructions. The user manual includes directions on how to install the
software package, perform camera model identification, feature extraction, and classifier training.

3The Dresden Image Database is available at http://forensics.inf.tu-dresden.de/ddimgdb/
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Descriptions of all functions and subroutines invoked by this software package are included in the
user manual. The user manual also includes an explicit funding acknowledgement along with a
reference to the award number associated with this project.

Additionally, a software tool written in JAVA was created to crawl the photo sharing website
Flickr®, and download public domain images in order to create a large-scale database for testing
and validation purposes.

Copies of this software package, including all documentation, source code, trained classifiers,
and relevant executable files, along with copies of the JAVA-based tool designed to download large-
scale data from Flickr, were delivered to representatives from the Science Technology Integration
Laboratory (STIL) at the closeout meeting for this project that occurred on August 25, 2016.

Shttps://www.flickr.com/
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3 Participants & Other Collaborating Organizations

3.1 Participants

The following individuals participated in this project and were supported through funding provided
by this award (Award Number W911NF-15-2-0013).

e Matthew C. Stamm, Ph.D. (PI)

o Role: Principal Investigator
o Contribution to Project: Project management, algorithm development
o Collaborated With Individual in Foreign Country: No

o Traveled to Foreign Country: No

Nagarajan Kandasamy, Ph.D. (Co-PI)

o Role: Co-Principal Investigator
o Contribution to Project: Project management, algorithm development
o Collaborated With Individual in Foreign Country: No

o Traveled to Foreign Country: No

Xinwei Zhao

o Role: Research Assistant

o Contribution to Project: Programming/algorithm implementation, algorithm develop-
ment, image training data acquisition

o Collaborated With Individual in Foreign Country: No

o Traveled to Foreign Country: No

Belhassen Bayar

o Role: Research Assistant

o Contribution to Project: Programming/algorithm implementation, algorithm develop-
ment, image training data acquisition

o Collaborated With Individual in Foreign Country: No

o Traveled to Foreign Country: No

Chen Chen
o Role: Research Assistant
o Contribution to Project: Algorithm development, image training data acquisition
o Collaborated With Individual in Foreign Country: No

o Traveled to Foreign Country: No
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e Leland Machen

o Role: Research Assistant

o Contribution to Project: Programming/algorithm implementation, algorithm develop-
ment

o Collaborated With Individual in Foreign Country: No

o Traveled to Foreign Country: No

e Owen Mayer

o Role: Research Assistant

o Contribution to Project: Programming/algorithm implementation, graphical user inter-
face development, image training data acquisition

O

Collaborated With Individual in Foreign Country: No

(@)

Traveled to Foreign Country: No

3.2 Other Collaborating Organizations

Nothing to report.
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4 Impact

4.1 What is the impact on the development of the principal discipline of this
project?

This project led to the development of several new forensic algorithms designed to determine which
camera model captured an image. Specifically, two new camera identification algorithms and a new
data fusion framework to combine forensic traces were developed under this project. This has led
to two peer reviewed scientific papers that have already been published as well as two papers that
are in preparation for submission to peer reviewed scientific journals. These publications are listed
in Section 2.1.

We note that the algorithms developed under this project have significantly advanced efforts to
forensically determine an image’s source. In particular, the algorithm discussed in Section 1.2.3
currently produces the highest camera model identification accuracy reported in scientific literature
to the best of our knowledge. Recent peer reviewed publications have referred to this algorithm as
the state-of-the-art camera model identification algorithm’.

4.2 What is the impact on other disciplines?

Nothing to report.

4.3 What is the impact on physical, institutional, and information resources
that form infrastructure?

This project led to the development of the image database described in Sections 1.2.7 and 2.2. This
database will facilitate significant future research towards the development of new and improved
forensic algorithms designed to determine the source, authenticity, and processing history of digital
images.

4.4 What is the impact on society beyond science and technology?

The algorithms developed under this project can be used by the community at large to aid in veri-
fying the source and authenticity of digital images. In particular, these algorithms may be useful to
news reporting agencies that wish to verify the source of their images, law enforcement agencies
who wish to identify the source of images (particularly those involved in child exploitation cases),
legal experts who wish to verify evidence used in criminal and civil proceedings, and military and
defense organizations who wish to determine the origin and authenticity of signal intelligence.

L. Bondi, L. Baroffio, D. Guera, P. Bestagini, E. Delp, and S. Tubaro, “First Steps Towards Camera Model
Identification with Convolutional Neural Networks.” IEEE Signal Processing Letters, Dec. 2016.
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4.5 What dollar amount of the award’s budget is being spent in foreign
countries?

None of this project’s funding was spent in foreign countries. Travel to attend the IEEE Interna-
tional Workshop on Information Forensics and Security (WIFS) in Rome, Italy was paid for using
funds provided to PI Stamm by Drexel University.
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S5 Budgetary Information

Amount funded to date: $374,940.00
Amount invoiced to ONR Regional office: $374,843.46 (Direct: $275,797.89, Indirect $99,045.57)
Remaining balance: $66.54

The amount invoiced includes salary/stipend for Belhassen Bayar, Xinwei Zhao, Owen Mayer,
Chen Chen, and Leland Machen, Nagarajan Kandasamy, and Matthew Stamm. Additionally, it
includes the purchase of cameras and other equipment necessary to collect, store, and process data
for this project as well as travel to bi-annual progress meetings and the final closeout meeting.
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